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Contraction is indeed a beautiful relationship 
between the functions and their representations, 
not just an expression. Bonsall as well as 
Nadlerhave investigated the structure of fixed 
points of contraction mapping. These authors 
consider a sequence {Tn} of maps defined on a 
metric space (X, d) into itself and study the 
convergence of the sequence of fixed points for 
uniform or pointwise convergence of {Tn}, under 
contraction assumptions of the maps. In this 
chapter we are going to introduce the concept of 
sequencially weak contraction using sequence of 
functions which are uniformly convergent to a 
continuous function. The concept of weak 
contraction is already given by Dutta et. al. In this 
chapter, we present proof of three main theorems. 
In first theorem, we prove a fixed-point theorem 
for sequence of functions, which generalizes the 
result of Beg and Abbas  
The object of second and third theorem is to prove 
common fixed point theorem for pair of 
sequencially weak compatible mappings, which 
extends the well-known result of Moradi and  
We shall require the following definitions before 
the statement of our theorem. 
Definition 2.1 “Let (X, d) is a metric space. A 
mapping T: X → X is called contraction if there 
exists a real number α with 0 ≤ α < 1 such that  

(2.1)     d(Tx, Ty) ≤ α d(x, y) , for all x, y ∈ X, x ≠ 
y.” 
Definition 2.2 “A mapping T : X → X, where (X, 
d) is a metric space, is said to be weakly contractive 
if 

(2.2)     d(Tx, Ty) ≤ d(x, y) - 𝜑(d(x, y)),                                                                      

where x, y ∈ X and 𝜑 : [0, ∞) → [0, ∞) is a 
continuous and non-decreasing function such that 

𝜑(t) = 0 if and only if t = 0. 

If  we put  𝜑(t) = kt where 0 < k < 1, then equation 
(2.2) reduces to Banach contraction principle.” 

Definition 2.3 “A mapping T :X→X, where (X, 
d) is a metric space, is said to be sequencially 
weakly contraction  if 
(2.3)    d(Tx, Ty) ≤ d(x, y) - fn(d(x, y)), (where  fn : 

I→R , I is subset of R.)                                                          

where x, y ∈ X and  fn(t) is a sequence of function 
which converges uniformly to t, and non- 
decreasing function such that fn(t) = 0 if and only 
if t = 0. 
If  we put  fn(t) = kt where 0 < k < 1 and t = 1, 
then equation (2.3) reduces to Banach contraction 
principle.” 
Definition 2.4 “Two self-mappings f and g of a 
metric space (X, d) are said to be weakly 
commuting if  
 (2.4)     d(fgx, gfx) ≤ d(gx, fx) for all x in X. 
Further, Jungck introduced more generalized 
commutativity, so called compatibility, which is 
more general than that of weak commutativity.” 
Definition 2.5 “Two self-mappings f and g of a 
metric space (X, d)  are said to be compatible if                                                                                                                                              

(2.5)     lim
𝑛→∞

d(fgxn,gfxn) = 0  

whenever {xn} is a sequence in X such 

that  lim
𝑛→∞

 fxn = lim
𝑛→∞

 gxn = t  for some t in X.” 

Definition  2.6 “Let S and T be self-mapping of 

a non-empty set X . The mapping T  and S  are 
weakly compatible if   

 (2.6)     STxTSx =  whenever SxTx = .” 

Theorem 2.7 “Let T be a self mapping on a 
complete metric space (X, d) satisfying (2.3)   i.e.,  

d(Tx, Ty) ≤  d(x, y) -  fn(d(x, y)),  (where  fn: I  → 
R, I is subset of R.) 

where x, y ∈ X and  fn(t) is a sequence of function 
which converges uniformly to t, and non- 
decreasing function such that fn(t) = 0 if and only 
if t = 0, then T has a unique fixed point.  
Proof.  From equation (2.3), we have 
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d(Tx, Ty) ≤ d(x, y) -  fn(d(x, y))    = (I - fn) d(x, y)
      
Since   fn(t) is a sequence of function which 
converges uniformly to t and hence  
(I - fn)(t) uniformly  converges to 0 .  
Using Banach Contraction Principle,  we have a 
unique fixed point.” 
Theorem 2.8 Let (X, d) be a complete metric 
space and T be  self-maps of X satisfying (2.3)  and 
the following : 
(2.7)    T is continuous and 
(2.8)    T(xn-1) =  xn , n ≥ 1  

Then T has a unique fixed point x ∈ X. 
Proof.  Consider the sequence {xn}given by xn = 
T(xn-1) , n ≥ 1 
First we  prove  that {xn}is a cauchy’s sequence  in 
X. 
 for  m < n,  we use the triangle inequality and note 
that,   

 (2.9)   d(xm, xn)  d(xm, xm+1) + d(xm+1, xm+2) + 

d(xm+2, xm+3)……….+ d(xn-1, xn)  
 Using equations (2.8) and  (2.3), we have    
 d(xp, xp+1)  =  d(T (xp-1), T(xp))  

            d(xp-1, xp)  - fn (d(xp-1, xp))   

                   =  ((I - fn)) d(xp-1, xp)   
for any positive  integer p ≥1,using the inequality 
repeatedly ,we obtain 
d(xp,xp+1)  ≤  ((I - fn))d(xp-1,xp)  
                  ≤  ((I - fn))2d(xp-2,xp-1)   
                  ≤ ((I - fn))p d(x0,x1) 
Hence, 
 (2.10)    d(xp, xp+1)  ≤  ((I - fn))p d(x0,x1)                                                     
Using equation (2.9) in (2.10), we have 
d(xm,xn)  ≤  d(xm,xm+1) + d(xm+1,xm+2) + 
d(xm+2,xm+3) +……………+ d(xn-1,xn) 
  ≤ ((I - fn))m d(x0,x1) + ((I - fn))m+1 d(x0,x1) 
+………….. + ((I - fn))n-1 d(x0,x1) 
  = (((I - fn))m  + ((I - fn))m+1  + …. … + ((I - fn))n-1) 
d(x0,x1)) 
  ≤ (((I - fn))m  + ((I - fn))m+1  + …….  + ((I - fn))n-1  

+……. ) d(x0,x1) 
  =  ((I - fn))m    (fn)d(x0,x1) 
Since fn(t) is a sequence of function which 
converges uniformly to t and  hence  
(I - fn)(t)  uniformly converges to 0 .  
Hence, {xn} is a cauchy sequence in metric space. 
Since, given metric space is complete, this 
sequence has a limit, say x which belongs to metric 
space. It follows that 

  x =   lim
𝑛→∞

T(xn-1)  

   = T ( lim
𝑛→∞

xn-1)      [T is continuous] 

   = T(x) 
And thus, x is a fixed point of T. 
Uniqueness: 
Let x and z both are fixed points of T, we have 

d(x, z) = d(Tx, Tz)  (I - fn) d(x, z)          [using 

equation (2.3)] 

i.e., d(x,z)   0, as fn(t) is a sequence of function 

which converges uniformly to t.   
we must have,  x = z. 
Theorem 2.9 “Let (X, d) be a metric space and let 

T : X  X be a mapping such that, 

(2.11)     d(Tm x, Tm y)  d(x, y) - fn (d(x, y)) ∀ x, y 

∈ X 
for some m ≥ 1, where fn(t) is a sequence of 
function which converges uniformly to t and non-
decreasing function such that fn(t) = 0 if and only 
if t = 0, then T has a unique fixed point. 
Proof. Using theorem 2.8, Tm has a unique fixed 
point. 
Thus,  z = Tm(z) 
Implies that, 
(2.12)   T(z) = T(Tm(z)) = Tm (T(z)) 
Thus T(z) is a fixed point of Tm .  
Hence, by uniqueness of such fixed points z = 
T(z). 
And thus, z is a fixed point of T. 

Example 2.10 Consider the space, X = {x ∈ ℝ │x 
≥ 1} with metric, 

 d(x, y) = │x - y│  ∀ x, y ∈ X and T : X → X is 

given by T(x) = x + 
1

𝑥
. 

Then an easy computation shows that 

 d(Tx, Ty) = 
𝑥𝑦−1

𝑥𝑦
 │x – y│ = │x – y│ - 

1

𝑥𝑦
 

│x - y│ 

{
 
 
 
 

 
 
 
 ∵ 𝑇(𝑥) =  

𝑥2 + 1

𝑥
,   𝑇(𝑦) =  

𝑦2 + 1

𝑦

𝑑(𝑇𝑥, 𝑇𝑦) =  │
𝑥2 + 1

𝑥
−
𝑦2 + 1

𝑦
│ = │

𝑥2𝑦 + 𝑦 − 𝑥𝑦2 − 𝑥

𝑥𝑦
│

│
𝑥𝑦(𝑥 − 𝑦) − (𝑥 − 𝑦)

𝑥𝑦
│

[
𝑥𝑦 − 1

𝑥𝑦
│𝑥 − 𝑦│]

}
 
 
 
 

 
 
 
 

 

d(Tx, Ty) < │x - y│ = d(x, y) 

on other hand there ∄ fn(t) is a sequence of 
function which converges uniformly to t such that, 

d(T(x), T(y)) ≤ d(x, y) - fn (d(x, y)) ∀ x, y ∈ X 
and one may verify that T has no fixed point in X.” 
The following theorem is the  generalized  result 
of Beg et. al. [39]  using sequence of function as: 
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Theorem 2.11 “Let (X, d) be a complete metric 
space and let T : X → X be a self-mapping 
satisfying the inequality 

(2.13)     𝜓(d(Tx, Ty)) ≤ 𝜓(d(x, y)) – fn(d(x, y))       

(fn:I (interval or subset of R) →  R) where fn(t) is a 
monotonically non-decreasing sequence of 

function  which converges uniformly to 𝜓(𝑡). 
Where 𝜓 ∶ [0,∞) →
[0,∞)is continuous and monotonically non-
decreasing and continuous function. Then T has a 
unique fixed point. 

Proof.  For any x0 ∈ X,we construct a sequence 
{xn} by, 
xn =  Txn-1 , n = 1,2,3,4……. 
substituting x = xn-1 and y = xn in equation (2.13), 
we obtain 

(2.14)     𝜓(d(xn, xn+1)) ≤ 𝜓(d(xn-1, xn)) – fn(d(xn-1, 
xn ))       
Which implies, 

(2.15)      d(xn, xn+1) ≤ d(xn-1, xn) (using monotonic 

property of  𝜓 -function)                 
it follows that the sequence {d(xn, xn+1)} is 
monotonically decreasing  and consequently there 
exist r ≥ 0 such that 
(2.16)      d(xn, xn+1)  → r    as   n →  ∞         
letting   n → ∞  in equation (2.14), we obtain 

(2.17)      𝜓(r)  ≤ 𝜓(r) - 𝜓(r)                                    

since,    lim
𝑛→∞

fn(r) = 𝜓(r)   

Which is a contradiction unless r = 0 ,since 𝜓(r) ≥ 
0. Hence  
(2.18)      d(xn, xn+1)  → 0    as   n →  ∞       
we next prove that {xn} is a cauchy sequence.  
If possible let {xn} is not cauchy sequence then 
there exist ε > 0 for which we can find 
subsequence {xm(k)} and {xn(k)} of {xn} with n(k) 
> m(k) > k such that 
(2.19)     d(xm(k),xn(k))  ≥  ε              
further corresponding to m(k), we can choose n(k) 
in such a way that it is a smallest integer with n(k) 
> m(k) and satisfying equation (2.19), then 
(2.20)      d(xm(k),xn(k)-1)  <  ε                
then we have, 
(2.21)      ε  ≤ d(xm(k),xn(k))  ≤  d(xm(k),xn(k)-1) + d(xn(k)-

1,xn(k))  < ε + d(xn(k)-1,xn(k))        
letting  k → ∞  and  using equation (2.18), we have 

(2.22)       lim 
   𝑘→∞

d(xm(k),xn(k))  < ε         

again, 
 (2.23)      d(xn(k)-1,xm(k)-1)  ≤  d(xn(k)-1,xn(k)) + 
d(xn(k),xm(k)) + d(xm(k),xm(k)-1)       
letting  k → ∞ in the above inequalities and using 
equations (2.18) and (2.22), we get 

(2.24)        lim
           𝑘→∞

d(xn(k)-1,xm(k)-1) = ε            

setting x = xm(k)-1 and y = xn(k)-1 in equation (2.13)  
and using equation (2.19), we obtain 

(2.25)        𝜓(𝜀) ≤ 𝜓(d(xm(k) , xn(k)))          [since 
Txn-1 =  xn ] 

                              ≤ 𝜓(d(xm(k)-1, xn(k)-1)) - fn(d(xm(k)-1, 
xn(k)-1))               
letting k → ∞  in the above inequalities and using 
equations (2.22) and (2.24), we obtain 

(2.26)        𝜓(𝜀) < 𝜓(𝜀) - fn(𝜀)    

Which is a contradiction if   𝜀 > 0. 

Since fn(𝑡) converges uniformly to 𝜓(𝜀). 
This shows that {xn} is a cauchy sequence and 
hence is convergent in the complete metric space 
X. 
(2.27)     Let  xn → z (say) as n →  ∞       
Substituting x = xn-1 and y = z in equation (2.13), 
we obtain 

(2.28)      𝜓(d(xn,Tz)) ≤ 𝜓(d(xn-1,z)) - fn(d(xn-1,z))           
[since Txn-1 =  xn ] 
letting n →  ∞, using equation (2.27)  and 

continuity of 𝜓 and continuity of fn at infinity we 
have 

𝜓 (d(z,Tz)) ≤ 𝜓(0) - lim
𝑛→∞

{fn(0)} 

                   ≤ 𝜓(0) - 𝜓(0)  
                   = 0 

Which implies, 𝜓(d (z, Tz)) = 0             
 (2.29)     i.e.,  d(z,Tz) = 0  
                 or 
(2.30)      z = Tz             
To prove uniqueness of fixed point, let z1 and  z2 
are two fixed points of T. 
Putting x = z1 and y = z2  in equation (2.13), we 
have 

𝜓(d(Tz1, Tz2)) ≤ 𝜓(d(z1, z2)) – fn(d(z1, z2))          

or 𝜓(d(z1, z2))  ≤  𝜓(d(z1, z2)) -  fn(d(z1, z2))            
[using equation (2.30)] 

(2.31)    𝜓(d(z1, z2)) ≤ 0 

Since fn(𝑡)  converges uniformly to 𝜓(𝑡). Hence 
(2.32)    d(z1, z2) = 0, i.e., z1 = z2  . 

this proves the uniqueness of fixed point.”  
The following result is the generalized result of 
Moradi et. al. [89] on metric space for pair of 
sequencially weak compatible mappings. 
Theorem 2.12 “Let f and g be self mappings on a 
metric space (X, d) satisfying the followings: 

(2.33)     gX ⊂ fX, 
(2.34)     gX or fX is complete, 

(2.35)     𝜓(d(gx,gy)) ≤ 𝜓(d(fx, fy)) – fn(d(fx,fy))  
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 ( fn : I (interval or subset of R) → R ) for all x, y ∈ 
X  

where 𝜓 : [0, ∞) → [0, ∞) is mappings with 𝜓(0) 
= 0, fn(t) > 0 also, fn(t) is a uniformally convergent 

sequence which converges to 𝜓 (t) and  𝜓(t) > 0 
for all t > 0.  
Suppose also that either 

(a)  𝜓 is continuous and  lim
𝑛→∞

𝑡𝑛= 0, if  

lim
𝑛→∞

 𝑓𝑛( 𝑡𝑛) =  0   or 

(b) 𝜓 is monotonic non-decreasing and 

lim
𝑛→∞

𝑡𝑛= 0, if {tn} is bounded and  

lim
𝑛→∞

 𝑓𝑛( 𝑡𝑛) =  0.   

Then f and g have a unique point of coincidence 
in X. Moreover, if f and g are weakly compatible, 
then f and g have a unique common fixed point. 

Proof. Let x0 ∈ X. From equation (2.33), we can 
construct sequences {xn} and {yn} in X by  
yn = fxn+1 = gxn,   n = 0, 1, 2, . . .  . 
Moreover, we assume that if yn =  yn+1 for some n 

∈ ℕ, then there is nothing to prove.”  

“Now, we assume that yn ≠ yn+1 for all n ∈ ℕ. 
Substituting x = xn+1  and  y = xn   in equation 
(2.35), we have  
(2.36)     𝜓(d(yn+1, yn)) = 𝜓(d(gxn+1,gxn)) 

  ≤ 𝜓(d(fxn+1, fxn)) – fn(d(fxn+1,fxn)) 

= 𝜓(d(yn, yn-1)) – fn(d(yn,yn-1))          [using yn = 
fxn+1] 

for all n ∈ ℕ and hence, the sequence {𝜓(d(yn+1, 
yn))} is monotonic decreasing and bounded below. 

Thus, there exists r ≥ 0 such that lim 
𝑛→∞

𝜓(d(yn+1, 

yn)) = r. 
From equation (2.36), we deduce that 
(2.37)     0  ≤  fn(d(yn,yn-1))  

                   ≤  𝜓(d(yn, yn-1))  -  𝜓(d(yn+1, yn)).                                              
Letting n → ∞ in the above inequality, we get  

lim
𝑛→∞

𝑓n( (d(yn, yn-1)) = 0.  

If (a) holds, then by hypothesis  lim
𝑛→∞

d(yn, yn-1) = 0.  

If (b) holds, then from equation (2.37), we have 

d(yn+1, yn) < d(yn, yn-1), for all n∈ ℕ.  
Hence {d(yn+1, yn)} is monotonically decreasing 
and bounded below sequence.  

By hypothesis, lim
𝑛→∞

d(yn, yn-1) = 0.  

Therefore, in every case, we conclude that 

(2.38)      lim
𝑛→∞

d(yn, yn-1) = 0.”                              

“Now, we claim that {yn} is a cauchy sequence. 

Indeed, if it is false, then there exists 𝜀> 0 and the 
subsequences {ym(k)} and {yn(k)} of {yn} such that 
n(k) is minimal in the sense that n(k) > m(k) > k 

and d(ym(k), yn(k)) ≥ 𝜀 and by using the triangular 
inequality, we obtain 

𝜀 ≤ d(ym(k), yn(k)) ≤  d(ym(k), ym(k)-1) + d(ym(k)-1, yn(k)-1) 
+ d(yn(k)-1, yn(k))  
                            ≤  d(ym(k), ym(k)-1) + d(ym(k)-1, 
ym(k)) + d(ym(k), yn(k)-1)  + d(yn(k)-1, yn(k)) 

 (2.39)                 <  2d(ym(k), ym(k)-1) + 𝜀 + d(yn(k)-1, 
yn(k))        [since n(k) is minimal]                                                                                        
Letting k → ∞ in the above inequality and using 
equation (2.38), we get 

(2.40)      lim
𝑘→∞

 (d(ym(k), yn(k)) = lim
𝑘→∞

 (d(ym(k)-1, yn(k)-1) 

= 𝜀. 
For all k∈ ℕ, from equation (2.35), we have 

(2.41)      𝜓(d(ym(k), yn(k))) ≤ 𝜓(d(ym(k)-1, yn(k)-1)) – 
fn(d(ym(k)-1,yn(k)-1)) 
If (a) holds, then 

lim
𝑘→∞

𝜓(d(ym(k)-1, yn(k)-1)) =  lim
𝑘→∞

𝜓(d(ym(k), yn(k))) = 

𝜓(𝜀), 
Now, from equation (2.41), we conclude that 

     lim
        𝑘→∞

  fn(d(ym(k)-1, yn(k)-1) = 0. 

By hypothesis  lim
𝑘→∞

d(ym(k)-1, yn(k)-1) = 0, a 

contradiction.     [using equation (2.40)] 
If (b) holds, then from equation (2.41), we have 

𝜀 < d(ym(k), yn(k)) < d(ym(k)-1, yn(k)-1) and so 

 d(ym(k), yn(k)) → 𝜀+ and d(ym(k)-1, yn(k)-1) → 𝜀+ as k 
→ ∞.  

Hence  lim
𝑘→∞

𝜓(d(ym(k)-1, yn(k)-1)) =  lim
𝑘→∞

𝜓(d(ym(k), 

yn(k))) = 𝜓(𝜀+), 

where 𝜓(𝜀+) is the right limit of 𝜓 at 𝜀. 
Therefore, from equation (2.41), we get  

lim
𝑘→∞

fn(d(ym(k)-1, yn(k)-1)) = 0.  

By hypothesis lim
𝑘→∞

d(ym(k)-1, yn(k)-1) = 0, a 

contradiction.  
Thus {yn} is a cauchy sequence.” 

“Since fX is complete, so there exists a point z ∈ 

fX such that lim
𝑛→∞

 yn = lim
𝑛→∞

 fxn+1 = z. 

Now, we show that z is the common fixed point 

of f and g. Since z ∈ fX, so there exists a point p ∈ 
X such that fp = z. 

If (a) holds, then from equation (2.35), for all n ∈
ℕ, we have 

𝜓(d(fp, gp)) = lim
𝑛→∞

𝜓(d(gp,gxn))  

    ≤ lim
𝑛→∞

𝜓(d(fp, fxn)) – lim
𝑛→∞

fn (d(fp,fxn)) 

                    ≤  lim
𝑛→∞

𝜓(d(fp, fxn)).         

(2.42)     𝜓(d(fp, gp))  ≤   lim
  𝑛→∞

𝜓(d(fp, fxn)).                                     

Using condition (a) and  lim
𝑛→∞

yn = z, we get 
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𝜓(d(fp, gp))  ≤  𝜓(d(z, z)) = 𝜓(0) = 0 and so d(gp, 

fp) = 0 (note that fn and 𝜓 are non-negative with 

fn(0) = 𝜓(0) = 0), which implies that gp = fp = z. 
If (b) holds, then from equation (2.35), we have 

𝜓(d(fp, gp)) = lim
𝑛→∞

𝜓(d(gp,gxn)) ≤ lim
𝑛→∞

𝜓(d(fp, 

fxn))  -  lim
𝑛→∞

fn(d(fp,fxn)) 

(2.43)    𝜓(d(fp, gp)) =0  (since fn converges 

uniformly to 𝜓) 
d(fp, gp) = 0, which implies that fp = gp = z(say). 
Now, we show that z = fp = gp is a common fixed 
point of f and g. Since fp = gp and f, g are weakly 
compatible maps, we have fz = fgp = gfp = gz. 
We claim that fz = gz = z. 
Let, if possible, gz ≠ z. 
If (a) holds, then from equation (2.35), we have 

𝜓(d(gz, z)) = 𝜓(d(gz, gp))  

                     ≤ 𝜓(d(fz, fp)) – fn(d(fz,fp)) 

                   = 𝜓(d(gz, z)) – fn(d(gz,z)) 

                   < 𝜓(d(gz, z)), a contradiction.    
If (b) holds, then we have 
d(gz, z) < d(gz, z), a contradiction. Hence 
(2.44)   gz = z = fz 
So z is the common fixed point of f and g.” 
“For the uniqueness, let u be another common 
fixed point of f and g, so that fu = gu = u. 
We claim that z = u. Let, if possible, z ≠ u. 
If (a) holds and  n→ ∞  then from equation (2.35), 
we have 

𝜓(d(z, u)) = 𝜓(d(gz, gu))  

                  ≤ 𝜓(d(fz, fu)) – fn(d(fz,fu)) 

                = 𝜓(d(z, u)) – fn(d(z,u))  

                < 𝜓(d(z, u)), a contradiction. 
If (b) holds, then we have 
                 d(z, u) < d(z, u), a contradiction.  
Thus, d(z, u) = 0 i.e., we get z = u.  
Hence z is the unique common fixed point of f and 
g.” 
Now, we prove our result on metric space for pair 
of sequencially weak compatible mappings which 
generalized the  result of Moradi et. al.  
Theorem 2.13 “Let f and g be self mappings of a 
metric space (X, d) satisfying equations (2.33), 
(2.34) and the following: 

(2.45)    𝜓(d(gx, gy)) ≤ 𝜓(N(fx, fy)) – fn(N(fx, 
fy)),(sequentially weak contractive mapping) 
where  N(fx, fy) = max{d(fx, fy), d(fx, gx), d(fy, 

gy), 
𝑑(𝑓𝑥,𝑔𝑦)+ 𝑑(𝑓𝑦,𝑔𝑥)

2
}, 

for all x,y ∈ X, where fn(t) is a monotonically non-
decreasing sequence of function  which converges 

uniformly to 𝜓(𝑡)𝑎𝑛𝑑 fn(0) = 0 and fn(t) > 0 for 

all t > 0 and lim
𝑛→∞

 𝑡𝑛= 0, if {tn} is bounded and 

lim
𝑛→∞

fn(tn) = 0 and  𝜓: [0, ∞) → [0, ∞) is a mapping 

with 𝜓(0) = 0 and 𝜓 (t) > 0 for all t > 0.  
Suppose also that either 

(c) 𝜓 is continuous  
       or 

(d) 𝜓 is monotone non-decreasing and for all k > 

0, fn(k) >𝜓(k) - 𝜓(k-), where 𝜓(k-) is the    

    left limit of 𝜓 at k. 
Then f and g have a unique point of coincidence 
in X. Moreover, if f and g are sequentially weakly 
compatible, then f and g have a unique common 
fixed point. 

Proof.  Let x0 ∈ X. From equation (2.33), we can 
construct sequences {xn} and {yn} in X by 
yn = fxn+1 = gxn, n = 0, 1, 2, . . . .  
Moreover, we assume that if yn = yn+1 for some n 

∈ ℕ, then there is nothing to prove.  

Now, we assume that yn ≠ yn+1 for all n ∈ ℕ. 
Putting x = xn+1 and y = xn in equation (2.45), we 
have 

 (2.46)     𝜓(d(yn+1, yn)) ≤ 𝜓(N(yn, yn-1)) – fn((N(yn, 
yn-1)),                                                                             
where 
(2.47)     N(yn, yn-1) = max{ d(yn, yn-1), d(yn, yn+1), 

d(yn-1, yn), 
𝑑(𝑦𝑛,𝑦𝑛)+ 𝑑 (𝑦𝑛−1,𝑦𝑛+1)

2
}.                                 

If d(yn, yn-1) < d(yn, yn+1), then from equation (2.47) 
and yn ≠ yn+1, we conclude that 

(2.48)     𝜓(d(yn+1, yn)) ≤ 𝜓(d(yn, yn+1)) – fn(d(yn, 

yn+1)) < 𝜓(d(yn, yn+1)), 
 a contradiction.                                              
Therefore, d(yn, yn+1) ≤ d(yn, yn-1). 
Hence, the sequence {(d(yn, yn+1))} is 
monotonically decreasing and bounded below.  
From equations (2.46) and (2.47), we have 

(2.49)     𝜓(d(yn+1, yn)) ≤ 𝜓(d(yn, yn-1)) – fn(d(yn, yn-

1)).                                                                               

Therefore, the sequence {𝜓(d(yn+1, yn)) } is 
monotonically decreasing and bounded below. 

Thus, there exists r ≥ 0 such that lim
𝑛→∞

𝜓(d(yn+1, yn)) 

= r.  
From equation (2.49), we have  

(2.50)     lim
𝑛→∞

fn( (d(yn, yn-1)) = 0, implies that, lim
𝑛→∞

 

d(yn+1, yn) = 0.                                                                                                                                            
Now, we claim that {yn} is a cauchy sequence. 

Indeed, if it is false, then there exists 𝜀 > 0 and the 
subsequences {ym(k)} and {yn(k)} of {yn} such that 
n(k) is minimal in the sense that n(k) > m(k) > k 
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and d(ym(k), yn(k)) ≥ 𝜀 and by using the triangular 
inequality, we obtain 

𝜀 ≤ d(ym(k), yn(k)) ≤ d(ym(k), ym(k)-1) + d(ym(k)-1, yn(k)-1) 
+ d(yn(k)-1, yn(k))                                        
                            ≤ d(ym(k), ym(k)-1) + d(ym(k)-1, ym(k)) 
+ d(ym(k), yn(k)-1) + d(yn(k)-1, yn(k)) 

(2.51)                  < 2 d(ym(k), ym(k)-1) + 𝜀 + d(yn(k)-1, 
yn(k)).        [since n(k) is minimal]                                                                                 
Letting k → ∞ in the above inequality and using 
equation (2.51), we get 

(2.52)      lim
𝑘→∞

  (d(ym(k), yn(k)) = lim
𝑘→∞

  (d(ym(k)-1, yn(k)-

1) = 𝜀. 
From equation (2.45), for all k ∈ ℕ, we have 

(2.53)       𝜓(d(ym(k), yn(k))) ≤ 𝜓(N(ym(k)-1, yn(k)-1)) – 
fn(N(ym(k)-1, yn(k)-1)),                                                     
where 
 (2.54)      N(ym(k)-1, yn(k)-1) = max{ d(ym(k)-1, yn(k)-1), 
d(ym(k)-1, ym(k)),  
                                                                d(yn(k)-1, 

yn(k)),
𝑑(𝑦𝑚(𝑘)−1 ,𝑦𝑛(𝑘))+ 𝑑(𝑦𝑛(𝑘)−1 ,𝑦𝑚(𝑘))

2
}                                            

If equations (2.52) and (2.54) holds, then we 

conclude that lim
𝑘→∞

  (N(ym(k)-1, yn(k)-1)) = 𝜀. 

If (c)  holds, i.e.,  𝜓 is continuous, then 

lim
𝑘→∞

𝜓(d(ym(k), yn(k))) =  lim
𝑘→∞

𝜓(N(ym(k)-1, yn(k)-1)) = 

𝜓(𝜀), 
and hence from equation (2.53), we conclude that 

lim
𝑘→∞

 fn(N(ym(k)-1, yn(k)-1)) = 0. 

Since N(ym(k)-1, yn(k)-1) is bounded, we conclude that 

lim
𝑘→∞

 N(ym(k)-1, yn(k)-1) = 0, a contradiction. 

If (d) holds, i.e.,  𝜓 is monotone non-decreasing, 
then from equation (2.53), we have 

𝜀< d(ym(k), yn(k)) < N(ym(k)-1, yn(k)-1) for all k ∈ ℕ, and 
so  

d(ym(k), yn(k)) → 𝜀+ and N(ym(k)-1, yn(k)-1) → 𝜀+ as k 
→ ∞.  

Hence, lim
𝑘→∞

𝜓(d(ym(k), yn(k))) =  lim
𝑘→∞

𝜓(N(ym(k)-1, 

yn(k)-1)) = 𝜓(𝜀+), where 𝜓(𝜀+) is the right limit of 

𝜓 at 𝜀. 
Therefore, from equation (2.53), we have 

lim 
𝑘→∞

fn(N(ym(k)-1, yn(k)-1)) = 0.  

Since {N(ym(k)-1, yn(k)-1)} is bounded, we conclude 

that lim
𝑘→∞

 N(ym(k)-1, yn(k)-1) = 0, a contradiction. 

Thus {yn} is a cauchy sequence.  

Since fX is complete, so there exists a point z ∈ fX 

such that lim
𝑛→∞

 yn = lim
𝑛→∞

 fxn+1 = z. 

Now, we show that z is the common fixed point 
of f and g.  

Since z ∈ fX, so there exists a point p ∈ X such 
that fp = z. 
We claim that fp = gp. Let, if possible, fp ≠ gp. 
From equation (2.45), we have 

𝜓(d(gp, fp)) = lim
𝑛→∞

𝜓(d(gp, gxn)) 

        ≤ lim
𝑛→∞

𝜓(N(fp, fxn)) – lim
𝑛→∞

fn((N(fp, 

fxn)), 

                    =  𝜓(d(fp, gp)) -fn((d(fp, gp)), 
since N(fp, fxn) = max{d(fp, fxn), d(fp, gp), d(fxn, 

gxn), 
𝑑(𝑓𝑝,𝑔𝑥𝑛)+ 𝑑(𝑓𝑥𝑛,𝑔𝑝  )

2
}. 

Letting limit as n → ∞, we have 

lim
𝑛→∞

 N(fp, fxn) = max{d(fp, z), d(fp, gp), d(z, z), 

𝑑(𝑓𝑝,𝑧)+ 𝑑(𝑧,𝑔𝑝  )

2
} 

                        = max{0, d(fp, gp), 0, 
𝑑(𝑓𝑝,𝑔𝑝  )

2
} = 

d(fp, gp). 
If (c) holds, then we have 

𝜓(d(gp, fp)) < 𝜓(d(gp, fp)), a contradiction.                                                            
If (d) holds, then we have 
d(gp, fp) < d(gp, fp), a contradiction. 
Hence,  fp = gp = z. 
Now we show that z = fp = gp is a common fixed 
point of f and g. Since fp = gp and f, g are weakly 
compatible maps, we have fz = fgp = gfp = gz. 
We claim that fz = gz = z. 
Let, if possible gz ≠ z 
From equation (2.45), we have                         

𝜓(d(gz, z)) = 𝜓(d(gz, gp))  

                    ≤ 𝜓(N(fz, fp)) – fn((N(fz, fp))  

                  = 𝜓(d(gz, z)) –fn((d(gz, z)), 
Since N(fz, fp) = max{d(fz, fp), d(fz, gz), d(fp, gp), 
𝑑(𝑓𝑧,𝑔𝑝)+ 𝑑(𝑓𝑝,𝑔𝑧)

2
} 

                        = max{d(gz, z), d(gz, gz), d(gp, 

gp), 
𝑑(𝑔𝑧,𝑧)+ 𝑑(𝑧,𝑔𝑧  )

2
} 

                        = d(gz, z). 
If (c) holds, then we have 

𝜓(d(gz, z)) < 𝜓(d(gz, z)) , a contradiction.                                                            
If (d) holds, then we have 
d(gz, z) < d(gz, z) , a contradiction. 
Hence gz = z = fz, so z is the common fixed point 
of f and g. 
For the uniqueness, let u be another common 
fixed point of f and g, so that fu = gu = u. 
We claim that z = u. 
Let, if possible, z ≠ u. 
From equation (2.45), we have                      

𝜓(d(z, u)) = 𝜓(d(gz, gu))  

                  ≤ 𝜓(N(fz, fu)) –fn((N(fz, fu))  
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                = 𝜓(d(fz, fu)) –fn((d(fz, fu)), since N(fz, 
fu) = d(fz, fu). 

                = 𝜓(d(z, u)) – fn(d(z, u)). 
If (c) holds, then we have 

𝜓(d(z, u)) < 𝜓(d(z, u)), a contradiction.                                                    
If (d) holds, then we have 
d(z, u) < d(z, u), a contradiction.  
Thus, we get z = u.  
Hence z is the unique common fixed point of f and 
g. 
Example 2.14 Let X = [0, 1] be  Euclidean metric 

space with d(x, y) = |𝑥 − 𝑦| for all x, y in X and 

let gx = (
1

5
)x and fx = (

3

5
)x for each x ∈ X. Then 

d(gx, gy) =  (
1

5
)|𝑥 − 𝑦|  and d(fx, fy) =  

(
3

5
)|𝑥 − 𝑦|. 

Let 𝜓(t) = 5t  and  fn(t) = 25nt/(5n+t). Then 

𝜓(d(gx, gy)) = 𝜓((
1

5
)|𝑥 − 𝑦|) = |𝑥 − 𝑦| 

𝜓(d(fx, fy)) = 𝜓((
3

5
)(|𝑥 − 𝑦|= 5(

3

5
)|𝑥 − 𝑦| = 

3|𝑥 − 𝑦| 
fn((d(fx, fy)) = 15n|𝑥 − 𝑦| /(5n+|𝑥 − 𝑦|).  
Also fn(x) is a sequence of function which 

uniformly converges to 𝜓(𝑥). 
Now 

𝜓(d(fx, fy)) - fn((d(fx, fy)) = 3|𝑥 − 𝑦|-15n|𝑥 − 𝑦| 
/(5n+|𝑥 − 𝑦|) 
                                           = 3|𝑥 − 𝑦|[1-5n 

/(5n+|𝑥 − 𝑦|)]  
And [1-5n /(5n+|𝑥 − 𝑦|)] ≥ 0,  if n approaches to 
infinity. 

So 𝜓(d(gx, gy)) < 𝜓(d(fx, fy)) -  fn((d(fx, fy)). 
From here, we conclude that f, g satisfy the 
relation equation (2.35).  

Also gX = [0, 
1

5
] ⊆ [0, 

3

5
] = fX, f and g are weakly 

compatible and 0 is the unique common fixed 
point of f and g.” 
Conclusion  
In this chapter some important theorems have 
been successfully proved, taking sequence of 
function which is uniformly convergent to a 
continuous function. In the above consideration, 
using the sequentially convergent mapping we 
have proved many generalization of already well 
known theorems related to fixed point in a 
complete metric space. 
It is surprising to see that some other 
generalization hold true for the already existing 
theorems on common fixed in a complete metric 
space and correspondingly many other 

generalization can be proved. An example has 
been quoted to prove the desired result. 
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